Using Monte Carlo simulation to assess variability and uncertainty of tobacco consumption in a city by sewage epidemiology

نویسندگان

  • De-Gao Wang
  • Qian-Qian Dong
  • Juan Du
  • Shuo Yang
  • Yun-Jie Zhang
  • Guang-Shui Na
  • Stuart G Ferguson
  • Zhuang Wang
  • Tong Zheng
چکیده

OBJECTIVE To use Monte Carlo simulation to assess the uncertainty and variability of tobacco consumption through wastewater analysis in a city. METHODS A total of 11 wastewater treatment plants (WWTPs) (serving 2.2 million people; approximately 83% of urban population in Dalian) were selected and sampled. By detection and quantification of principal metabolites of nicotine, cotinine (COT) and trans-3'-hydroxycotinine (OH-COT), in raw wastewater, back calculation of tobacco use in the population of WWTPs can be realised. RESULTS COT and OH-COT were detected in the entire set of samples with an average concentration of 2.33 ± 0.30 and 2.76 ± 0.91 µg/L, respectively. The mass load of absorbed NIC during the sampling period ranged from 0.25 to 4.22 mg/day/capita with an average of 1.92 mg/day/capita. Using these data, we estimated that smokers in the sampling area consumed an average of 14.6 cigarettes per day for active smoker. Uncertainty and variability analysis by Monte Carlo simulation were used to refine this estimate: the procedure concluded that smokers in Dalian smoked between 10 and 27 cigarettes per day. This estimate showed good agreement with estimates from epidemiological research. CONCLUSIONS Sewage-based epidemiology may be a useful additional tool for the large-scale monitoring of patterns of tobacco use. Probabilistic methods can be used to strengthen the reliability of estimated use generated from wastewater analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بررسی عدم قطعیت مدل موازنه جرمی برای تخمین نرخ فرایندهای هوازی در محل دفن پسماندهای شهری

Background and Objective: The aim of this study was to assess the sensitivity and uncertainty analysis of a mass balance model to estimate the rate of aerobic processes in a landfill. Materials and Methods: Monte Carlo simulation is a common method to evaluate uncertainty of the results of a model. Here, we used a Monte Carlo (MC) simulation. The data obtained from the experiments were used as...

متن کامل

Uncertainties due to Fuel Heating Value and Burner Efficiency on Performance Functions of Turbofan Engines Using Monte Carlo Simulation

In this paper, the impacts of the uncertainty of fuel heating value as well as the burner efficiency on performance functions of a turbofan engine are studied. The mean value and variance curves for thrust, thrust specific fuel consumption as well as propulsive, thermal and overall efficiencies are drawn and analyzed, considering the aforementioned uncertainties based on various Mach numbers at...

متن کامل

Sensitivity and uncertainty analysis of sediment rating equation coefficients using the Monte-Carlo simulation (Case study: Zoshk-Abardeh watershed, Shandiz)

The sediment load estimation is essential for watershed management and soil conservation strategies. The sediment rating curve is the most common approach for estimating the sediment load when the observed sediment records are not available. With regard to the measurement errors and the limitation of available data, the sediment rating curve has a degree of uncertainty which should be accounted...

متن کامل

Distribution network design under demand uncertainty using genetic algorithm and Monte Carlo simulation approach: a case study in pharmaceutical industry

Distribution network design as a strategic decision has long-term effect on tactical and operational supply chain management. In this research, the location-allocation problem is studied under demand uncertainty. The purposes of this study were to specify the optimal number and location of distribution centers and to determine the allocation of customer demands to distribution centers. The m...

متن کامل

Distribution network design under demand uncertainty using genetic algorithm and Monte Carlo simulation approach: a case study in pharmaceutical industry

Distribution network design as a strategic decision has long-term effect on tactical and operational supply chain management. In this research, the location– allocation problem is studied under demand uncertainty. The purposes of this study were to specify the optimal number and location of distribution centers and to determine the allocation of customer demands to distribution centers. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016